Story321.com
Story321.com
ホームBlog料金
Create
ImageVideo
EnglishFrançaisDeutsch日本語한국인简体中文繁體中文ItalianoPolskiTürkçeNederlandsArabicespañolPortuguêsРусскийภาษาไทยDanskNorsk bokmålBahasa Indonesia
ホーム
Image
Text to ImageImage to Image
Video
Text to VideoImage to Video
WritingBlog料金
EnglishFrançaisDeutsch日本語한국인简体中文繁體中文ItalianoPolskiTürkçeNederlandsArabicespañolPortuguêsРусскийภาษาไทยDanskNorsk bokmålBahasa Indonesia
ホームビデオ画像3Dライティング
Story321.com

Story321.comは、作家やストーリーテラーがAIの支援を受けながら、ストーリー、書籍、スクリプト、ポッドキャスト、ビデオなどを制作・共有するためのストーリーAIです。

フォローする
X
Products
✍️Writing

テキスト作成

🖼️Image

画像作成

🎬Video

動画作成

Resources
  • AI Tools
  • Features
  • Models
  • Blog
会社
  • 私たちについて
  • 料金
  • 利用規約
  • プライバシーポリシー
  • 返金ポリシー
  • 免責事項
Story321.com

Story321.comは、作家やストーリーテラーがAIの支援を受けながら、ストーリー、書籍、スクリプト、ポッドキャスト、ビデオなどを制作・共有するためのストーリーAIです。

Products
✍️Writing

テキスト作成

🖼️Image

画像作成

🎬Video

動画作成

Resources
  • AI Tools
  • Features
  • Models
  • Blog
会社
  • 私たちについて
  • 料金
  • 利用規約
  • プライバシーポリシー
  • 返金ポリシー
  • 免責事項
フォローする
X
EnglishFrançaisDeutsch日本語한국인简体中文繁體中文ItalianoPolskiTürkçeNederlandsArabicespañolPortuguêsРусскийภาษาไทยDanskNorsk bokmålBahasa Indonesia

© 2025 Story321.com. 無断複写・転載を禁じます

Made with ❤️ for writers and storytellers
    1. ホーム
    2. AIモデル
    3. Google AI
    4. Gemini

    Gemini

    Google Gemini Chatbot

    Google Gemini is Google’s flagship multimodal AI model that seamlessly understands text, images, audio, and video to deliver enterprise-grade reasoning and automation.

    Gemini

    Gemini 2.0 Key Capabilities

    Unlock end-to-end multimodal intelligence with the latest Gemini 2.0 family, optimized for enterprise deployment, realtime experiences, and giant context windows.

    Unified multimodal reasoning

    Understand and generate text, image, audio, and video in a single prompt. Gemini 2.0 fuses modalities to follow instructions like analyzing design mocks, answering about dashboards, or rewriting scripts with visual cues.

    Massive context windows

    Bring up to 2 million tokens of documents, codebases, or transcripts (preview) and let Gemini track dependencies, references, and task flow without manual chunk management.

    Realtime experiences with Gemini Live

    Stream low-latency responses across voice, text, and screen sharing. Realtime APIs power assistants that can listen, interrupt, and adapt while users speak or draw.

    Structured tool and function calling

    Expose APIs, databases, and workflow automations with schema-grounded tool definitions so Gemini can plan, call, and chain operations deterministically.

    Vertex AI & Workspace integration

    Ship prototypes to production with Vertex AI endpoints, data connectors, vector search, and built-in observability. Surface the same model inside Gmail, Docs, Sheets, and Duet for comprehensive coverage.

    Enterprise-grade safety and governance

    Rely on multi-layer content filters, data residency controls, and audit tooling that support SOC 2, ISO/IEC 27001, HIPAA, and other regulated workloads.

    How to Use Google Gemini in Production

    Follow these steps to move from prototype to governed deployment.

    1

    Choose your Gemini surface

    Prototype in AI Studio, route realtime voice via Gemini Live, or target managed Vertex AI endpoints for production traffic.

    2

    Prime the model with domain data

    Load documents into ground truth stores (Vertex AI Search, BigQuery, GCS) and reference them through extensions or retrieval.

    3

    Design and test prompt flows

    Iterate on system prompts, tool schemas, and evaluation metrics. Capture Golden prompts to regression-test updates.

    4

    Deploy, monitor, and iterate

    Ship guarded endpoints, log interactions, apply safety filters, and roll out prompt or model upgrades gradually.

    Launch Checklist

    • •Secure service accounts and secret management before wiring tools.
    • •Define guardrails with Vertex AI safety filters and content tagging.
    • •Track cost per interaction; leverage Flash tiers for high-volume traffic.

    Where Teams Deploy Gemini Today

    Gemini models adapt from ideation to operations. These scenarios highlight high-leverage wins our customers deliver with Gemini 2.0.

    Product discovery & research sprints

    Digest competitive reports, user interviews, and product analytics to surface insights, opportunity gaps, and prioritized roadmaps in minutes.

    Software engineering copilots

    Review entire repositories in one shot, design tests, and generate language bindings. Gemini follows repo-wide context to catch regressions before shipping.

    Creative & marketing production

    Storyboards, copy, motion prompts, and social calendars emerge from a single brief. Pair Gemini with Imagen or Veo outputs for campaign-ready assets.

    Customer support automation

    Build natural language agents that triage tickets, draft escalations, and auto-fill CRM actions while respecting brand tone and policy constraints.

    Enterprise knowledge assistants

    Connect to Confluence, Drive, BigQuery, and SaaS tools so teams can ask grounded questions, summarize policies, or draft compliance artifacts.

    Data analysis & BI co-pilots

    Blend text instructions with SQL, dashboards, and chart renders. Gemini narrates trends, crafts executive summaries, and recommends follow-up slices.

    Google Gemini FAQs

    Key answers for teams standardizing on the Gemini 2.0 family.

    Which Gemini version should I start with?

    Begin with Gemini 2.0 Flash for rapid, low-latency workloads. Switch to Gemini 2.0 Pro when you need advanced reasoning, multi-modal synthesis, or long-running planning. Gemini 1.5 Pro remains available for million-token context use cases in wider preview regions.

    How large is the Gemini context window?

    Gemini 2.0 Pro supports up to 2M tokens in private preview, while 1.5 Pro offers 1M tokens generally. Flash tiers currently expose 128K–1M tokens depending on region.

    Can Gemini access private enterprise data?

    Yes. Connect private corpora via Vertex AI Extensions, Google Workspace data controls, or secure API tools. Data is not used to train Gemini unless you opt in.

    Does Gemini support multilingual workflows?

    Gemini is trained on over 100 languages. For production, set locale expectations in your system prompt and test with language-specific safety classifiers.

    How is Gemini priced?

    Pricing varies by tier and deployment surface. AI Studio offers a free tier for prototyping, while Vertex AI bills per input/output tokens and realtime session minutes. Check the official pricing page for regional SKUs.

    Start Building with Google Gemini

    Prototype in minutes, deploy with governance, and unify multimodal intelligence across your organization.

    Feature availability and quotas depend on your Google Cloud project, billing status, and geography.

    関連モデル

    同じプロバイダーの他のAIモデルを探索

    Gemma

    Gemmaは、Google DeepMindの軽量なオープンソースAIモデルのファミリーであり、テキスト生成、質問応答、およびさまざまな言語タスクに強力なパフォーマンスを提供します。

    詳細を見る

    Veo

    Veo 3.1 is Google DeepMind's flagship AI video generator delivering 4K visuals, native audio, and precise creative controls.

    詳細を見る

    Nano Banana - AIで言葉を素晴らしい画像に変換

    Nano Bananaで次世代のAI画像作成を体験してください。キャラクターの一貫性からシームレスなビジュアルストーリーテリングまで、Nano BananaはAIで可能なことを再定義します。数秒で画像の生成と編集を開始します。

    詳細を見る

    Genie 3でインタラクティブな世界を構築する

    画像とビデオから制御可能な環境を作成します。あなたの想像力を解き放ちます。

    詳細を見る

    Gemini TTS

    Googleの高度なテキスト読み上げソリューションであるGemini TTSの可能性を解き放ちます。開発者、クリエイター、およびマルチロールサポートを備えた高品質でリアルな音声合成を求める企業に最適です。

    詳細を見る
    すべてのモデルを見る